Playing Games with Deep Reinforcement Learning

Debidatta Dwibedi Anirudh Vemula
debidatd@andrew.cmu.edu avemulal@andrew.cmu.edu
10701 16720
Abstract

Recently, Google Deepmind showcased how Deep learning can be used in con-
junction with existing Reinforcement Learning (RL) techniques to play Atari
games[10], beat a world-class player [13] in the game of Go and solve complicated
riddles [3]. Deep learning has been shown to be successful in extracting useful,
nonlinear features from high-dimensional media such as images, text, video and
audio [11]. For control tasks like playing games, researchers have traditionally
used handcrafted-features which require a lot of human effort. Convolutional neu-
ral networks (CNN) can be used to extract useful visual features from the high-
dimensional input, such as a video game screen, to learn near-optimal value func-
tion in such control tasks. We chose the Arcade Learning environment as our
testbed to examine how deep learning can be applied to a reinforcement learn-
ing setting and analyze performance of various modern algorithms. The learning
is performed end-to-end with no game knowledge included in the architecture or
during training. We also show how the architecture of the deep network used, can
be modified to achieve superior performances and compare performances on the
task of playing a complicated game Seaquest.

1 Introduction

The Reinforcement learning (RL) problem involves an agent interacting with an unknown environ-
ment (whose dynamics may or may not be known), by executing a sequence of actions and learning
from the observations and rewards received [14]. The goal of the agent is to maximize cumulative
rewards. Unlike a classic planning problem, an RL agent doesn’t start with perfect knowledge of the
environment, but learns through experience. This is very much in line with the behavioural psychol-
ogy school of thought which postulates that the behaviour of animals and people can be modulated
by providing different rewards and punishments.

Recent deep learning works have shown that deep learning systems are capable of extracting high-
level features from raw sensory data in supervised learning tasks. These algorithms are finally
reaching human level performance in many areas of artificial intelligence such as computer vision,
speech recognition [1] etc. In computer vision especially, deep learning systems are the state-of-the-
art algorithms in tasks like image classification [6] and semantic segmentation [4]. This has been
made possible due to the re-emergence of artificial neural networks in the form of convolutional
neural networks (for images) and recurrent neural networks (for audio). The availability of large
annotated datasets, computationally powerful GPUs and mathematical tricks such as ReLU came
together to make this re-emergence possible by bringing down the time taken for training such
models.

In this report, we examine how deep learning has been applied to the reinforcement learning prob-
lem, the challenges faced and how they have been overcome. We then proceed to implement several
of the most recent works and analyze their performance on the same testbed. We use Arcade learning
environment as our testbed for this purpose and compare different algorithms based on the cumula-
tive scores obtained by the respective trained agents. We start with an open-source implementation

of Deep Q Learning written in Python. We first attempt to understand how the baseline Deep Q
learning framework works and proceed to make modifications to that code to implement an LSTM
based Q network and a dueling architecture network. We show how changing architecture can re-
sult in superior performances over conventional architectures. We will end it with some results and
follow it up with potential future directions in this rapidly advancing field.

2 Related Work

Our work is related to recent research in Reinforcement learning, deep learning in supervised setting
and deep learning applied to reinforcement learning (deep RL).

2.1 Reinforcement Learning

Most of the successful cases of reinforcement learning have been in the domain of developing agents
for games. One such work is TD-Gammon, a backgammon playing program which was able to
beat world-class players without any human intervention. The program was learnt entirely using
reinforcement learning and self-play. It used a popular model-free reinforcement learning algorithm,
known as Q-learning, to learn an optimal policy by approximating the value function using a multi-
layer perceptron with one hidden layer.

The same program, unfortunately, could not be shown to be as effective in other domains such as the
game of Go, resulting in the widespread belief that the program could only work in the special case
of backgammon and performs poorly in other domains. Subsequently, research in RL shifted to the
simple case of using linear function approximators where the training procedure in Q-learning can be
theoretically proven to converge. But most real-life control tasks exhibit non-linearity which cannot
be captured effectively using linear function approximators. Hence, these systems have always fallen
short of achieving human-level performance in real-life tasks.

2.2 Deep Learning

As discussed before, most of the state-of-the-art systems in computer vision and other related fields
of Al use deep learning. Irrespective of the domain it is applied to, deep learning can be thought of
as performing a series of non-linear operations on the input data in a cascaded fashion. The major
reason why deep learning has been a resounding success is the fact that it acts as a high-quality
feature extractor on the data at multiple levels. For example, in case of images the first convolutional
layer (in CNNi5s) is shown to extract low-level features such as edges and corners. The subsequent
layer uses the features from the previous layer as input to extract textures in the image. These
textures are combined in a non-linear fashion by the next layer to identify parts and objects in the
image. These multi-level features are extracted by minimizing a given loss function on the training
set using backpropagation. Our work deals with convolutional neural networks [8] that are designed
specifically for image input. CNNs have been shown to be highly effective in image-related tasks
such as image classification [6] and semantic segmentation [4]. CNNs will be described in greater
detail in Section 3.2.

2.3 Deep Reinforcement Learning

Recently, Google Deepmind developed Deep Q-network (DQN), a deep neural network architecture,
that has been shown to be capable of learning human-level control policies on a variety of different
Atari 2600 games [10]. DQNs learn to estimate the Q-values (state-action value function) of se-
lecting each action from the current game state. Since, the state-action value function is a sufficient
representation of the agent’s policy, a game can be played by selecting the action with the maximum
Q-value at each timestep. Learning policies in this way from raw screen pixels to actions, these
networks have been shown to achieve state-of-the-art performance on several Atari 2600 games.
Note that the same network can be used in several tasks without any change and that the learning is
end-to-end from raw pixel values to Q-values without any need for handcrafted features or human
intervention. The architecture of DQN is described in Section 5.1.

DQNs have been extended in subsequent years to achieve better performance in complicated games.
Recurrent Deep Q-Networks combine a Long Short Term Memory (LSTM) and deep Q-network [5]

which makes the network capable of handling partial observability, and the recurrency inherent in
the LSTM confers benefits when the quality of observations change during evaluation time. Recur-
rent DQN, unlike DQN, doesn’t require multiple game frames as input and is capable of taking only
a single input frame and integrating information across time using the LSTM layer. We describe
the architecture in greater detail in Section 5.2. More recently, Wang et. al. [15] proposed a new
architecture called the Dueling Architecture DON which explicitly separates the representation of
state values and state-dependent action advantages. It consists of two streams that represent state
value function and action-advantage functions, while sharing a common convolutional feature learn-
ing module. The two streams are combined using a special aggregating layer to produce an estimate
of the Q-value. This architecture is the current state-of-the-art in playing Atari games and achieves
better than human-level performance in most games. This architecture is described in Section 5.3.

3 Background

Before describing the above architectures in detail, we lay out the required background for the
reader. The background would briefly cover the important concepts in reinforcement learning and
deep learning that can help the reader in understanding the later part of the report.

3.1 Reinforcement Learning

Q-learning,[16], is a popular learning algorithm that can be applied to most sequential tasks to learn
the state-action value function. It is an off-policy learning algorithm as we don’t execute the policy
that we try to learn during training, instead we use a behaviour policy which is exploratory in nature.
But the target action (or the desired action) is the one predicted by the policy learnt until now and
we apply the following update rule iteratively at each time step ¢:

Q(St, At) < Q(St, Ar) + a(Ry +vQ(Si41, A') — Q(Si, Ayr))

where A, is the action that the behaviour policy predicts in state S; whereas A’ is the action that our
current learnt policy predicts. The above update rule can be derived from the Bellman optimality
equation for MDPs, but that discussion is beyond the scope of this report.

We define another important quantity, the action advantage function which relates the state-action
value function with the state value function in the following way:

Ar(s,a) = Qr(s,a) — Vi(s)

Observe that E,~(s)[Ax(s,a)] = 0. Intuitively, the value function V measures how good it is to be
in a particular state s. The) function, however, measures the value of choosing a particular action
when in this state. The action advantage function subtracts the value of the state from the () function
to obtain a relative measure of the importance of each action.

Ideally, for small state-action spaces we can implement the state-action value function Q(.S, A) as a
lookup table, which can be accessed whenever the agent has to take an action. But, for large state-
action spaces a lookup table approach would be memory intensive and infeasible to implement.
Most works deal with this by using a linear function approximator for state-action value functions
i.e. they model Q(S, A) as a linear function of a fixed set of learnt parameters. For increasingly
complex tasks such as games where linear functions aren’t good enough to model Q(S, A), we
have to resort to non-linear function approximators such as neural networks. In such a scenario,
the newly developing field of deep neural networks, such as CNNs, can lend its capability to model
highly non-linear relationships.

3.2 Convolutional Neural Networks

Convolutional neural networks|[8], a type of deep neural network, are designed specifically for image
input. The intuition driving CNNss is that a filter that is useful for a right top patch in the image would
also be useful for a patch in the bottom right part in the image. This leads to the idea of weight
sharing across the entirety of the image which dramatically reduces the number of parameters in a
fully connected neural network which takes all pixels of an image as input. The other commonly
used layer is a max pooling layer which is used as a method of sub-sampling to go from higher
dimensions in the image to lower dimensions. Pooling transfers the activations from a patch of

units in the previous layer to a single unit. If the activations are being averaged then it is called as
average pooling. However, in practice, max pooling has been shown to be superior. In max pooling,
the maximum activation in a patch is transferred to the unit in the next layer and the rest of the
activations in that patch is discarded. In [8], deep neural network tries to learn a function to classify
images of handwritten characters. However, the same network can easily be used as a function
approximator by simply changing the loss function on the last layer from softmax loss to euclidean
loss. In Deep RL, CNNs will be used as function approximators where in they will take an image or
a stack of images as input and try to estimate a state-action value function from the visual input.

4 Deep Q Learning

In this section, we describe how deep learning has been applied to reinforcement learning in control
tasks, describe the challenges faced and how they were resolved.

4.1 Loss function

The basic idea behind many RL algorithms is to estimate the optimal state-action value function, by
using the bellman equation as an iterative update

QH_l(S, A) = E[R + ’YQi(S/, A/)|S, A]

As noted in section 3.1 for large state-spaces this approach is impractical to estimate state-action
value function for each state-action pair independently. Instead, we use a function approximator
to estimate the Q-values. In our case, if we use a neural network with weights 6 as the nonlinear
function approximator (Q-network), we can train the network by minimizing a sequence of loss
functions L;(6;) that changes at each iteration i,

Lz(ez) = Es,awp(') [(yz - Q(Sa a; 02))2]

where y; = E[r +ymax, Q(s’,a’;0;_1)|s, a] is the target from the iterative update given above, 6;
is the set of parameters at iteration ¢ and p(s, @) is the distribution induced by the behaviour policy.
Note that the loss function keeps changing from iteration to iteration as the target changes, unlike
supervised learning where the target is fixed for each data point and hence, the loss function is fixed
before learning begins.

4.2 Challenges

Reinforcement learning presents several fundamental challenges from a deep learning perspective.
In contrast to supervised learning setting, where large amounts of hand-annotated data is used to
train the deep network, in RL, the algorithm must learn the parameters of the deep network from
a scalar reward signal that is frequently sparse, delayed and noisy. The effect of action taken at
the current timestep can be observed after thousands of timesteps, which is quite contrasting to
what we see in supervised learning where there is a direct association between inputs and targets.
Additionally, in supervised learning we assume that the input training data is independent of each
other but in the case of RL, the input data is highly sequential and correlated with each other. This
breaks the assumption in most supervised training procedures and hence, these procedures converge
to a local minima or take too long to converge, in some cases. Also in RL, the incoming samples are
not drawn from a stationary distribution, as it is usually assumed in supervised learning. The input
data distribution keeps changing during training and the training algorithm has to accommodate the
non-stationarity of the distribution. All these challenges are resolved by using Experience replay
which was introduced in [9].

4.3 Experience Replay

Experience replay has been primarily introduced to break the correlations in the input data thereby
making them independent of each other, so that supervised learning procedures can still be applied.
This also results in the input distribution to be stationary as now subsequent data points are not
sequential (or correlated with each other). At each timestep when the agent takes an action, the
tuple (state, action, next state, reward) is stored in a database ¢.

After several thousand steps of random exploratory actions, the agent builds up a large database
€, which we refer to as the experience replay database. Subsequently, when the network tries to
minimize the loss function to get more refined Q-values, instead of sending the data sequentially,
we randomly sample a mini-batch of transitions from the database e. The loss function is then
minimized on this mini-batch of transitions. This ensures that the data sent for training (or back-
propagation procedure) is not correlated and hence the procedure converges to a better minima. For
a fixed number of such transitions, the Q-function is held fixed and is only updated for all the sam-
pled transitions in a mini-batch at one go. This is similar to performing stochastic gradient descent
using mini-batches. Hence, the new loss function is given by

Li (92) - Es,a,r,s’Ne[(r + Y ma/‘XQ(S/a a/; 91'71)
- Q(s,a;0:))]

5 DQN and its variants

In this section, we briefly describe the architectures of DQN and its variants that have been shown
to achieve human-level performance in various control tasks.

5.1 Deep Q-Network

The architecture for deep Q-network introduced in [10], is shown in Figure 1. The network takes in
the last 4 frames of the game, each of size 84 x 84. Note that these frames are sampled from the
experience replay database e during training. We use the last 4 frames as it can capture time-related
features such as velocity etc. The first hidden layer convolves 16 8 x 8 filters with stride 4 with the
input image and applies a rectified nonlinearity. The second hidden layer convolves 32 4 x 4 filters
with stride 2, again followed by rectified nonlinearity. The final hidden layer is fully-connected and
has 256 rectifier units. The output layer is fully-connected linear layer with a single output for each
valid action which predicts the Q-value for that action in the current state. This network is trained
using the popular backpropagation procedure.

32 44 filters 256 hidden units Fully-connected linear

4xB4xB4

B

Stack of 4 previous

Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Figure 1: Architecture of Deep Q-Network

5.2 Recurrent Deep Q-Network

As shown in Figure 2, recurrent deep Q-networks replace DQN’s first fully connected layer with an
LSTM layer. Also, note that the input to the recurrent DQN is a single frame, unlike 4 frames as is
the case in DQN. The convolutional layers also have a different number of filters and stride length
compared to DQN, as observed in the Figure 2.

The main motivation behind recurrent DQN is that in the case of games where the agent needs to
remember events more distant than 4 frames in the past, DQN would fail to learn such an agent. In
other words, any game that requires a memory of more than four frames will appear non-Markovian
to DQN because the future game states (and rewards) depend on more than just DQNs current input.
The LSTM layer in recurrent DQN serves to alleviate the problem by integrating information across
time and allows distant events to be remembered by the agent.

Also, in the case of partially observed environments where the agent does not receive observations
at every timestep, DQN cannot generalize to the unseen states. Recurrent DQN, on the other hand,
uses the recurrency within the LSTM layer to better estimate the underlying state when no observa-

tion is received and generalizes well. Thus, recurrent DQN can also deal with POMDPs (partially
observable markov decision process) unlike DQN.

Q-Values 7 18

LSTM / 512

Conv3
64-filters 64
3x3
Stride 1
7

7
Conv2 O(S. -
64-filters 2()
4x4 64
Stride 2 A A
9
Convl
32-filters
8x8
Stride 4
20
L

Figure 2: Architecture of Deep Recurrent Q-Network(left) and Dueling Network(right)

@%@\

U

5.3 Dueling Architecture DQN

The Dueling architecture DQN is illustrated in Figure 2. The lower layers of the dueling network
are convolutional as in DQN. However, instead of following the convolutional layers with a single
sequence of fully connected layers, two sequences (or streams) of fully connected layers are used.
The streams are constructed such that they have they have the capability of providing separate es-
timates of the value and advantage functions. Finally, the two streams are combined to produce a
single output) function. As in DQN, the output of the network is a set of Q-values, one for each
valid action.

The two streams are aggregated using a special aggregation function given below:

Q(s,a; 0,0, 8) =V (s:0, 8)+

<A(s,a; 0,a) — ﬁ ZA(s,a'; 0, a))

where 6 denotes the parameters of the convolutional layers, a and 3 denotes the parameters of the
two streams of fully-connected layers, and .4 denotes the action set.

The advantage of the dueling architecture lies in its ability to learn the state value function V' effi-
ciently. With every update for the Q values in the dueling architecture, the value stream V' is updated.
This is not the case in DQN, where only the value of one of the actions is updated, the values for
all the other actions remain untouched. This more frequent updating of the state value function V'
allows for a better estimate and is essential when the number of actions is large.

Also, note that the difference of Q-values for a given state is quite small compared to the magnitude
of the Q-value as the state value function dominates the magnitude (remember that Q,(s,a) =
Vz(s) + Ax(s,a)). This difference in scales can lead to small amounts of noise in the updates can
lead to reorderings of the actions, and thus make the policy switch abruptly in a noisy fashion. The
dueling architecture with its separate advantage stream is robust to such effects.

6 Experiments and Results

6.1 Setup

We have chosen the Arcade learning environment(ALE), [2], as our testbed. ALE consists of a col-
lection of Atari 2600 games and provides an interface to interact with the games through a program

OXYGEN

Figure 3: Screenshots of Breakout(left) and Seaquest(right)

instead of a controller. For any game, it provides a list of valid actions available for that game. We
can then choose a given action and the ALE executes the action in the game. At every point in the
game, we get the visual state of the game in the form of images of dimension 210 x 160. ALE also
provides us a reward at each time which is usually the score in the Atari game.

We have chosen two games Seaquest and Breakout to test DQN and its variants on and compare
their performances. Breakout is a relatively easy game where the player controls a paddle on the
bottom and has to hit a ball that keeps moving to break tiles present on the top of the screen. The
objective of the game is to break the most tiles without missing the ball during the entire episode.
An example screen is shown in Figure 3.

Seaquest, on the other hand, is a difficult game where the agent has to trade-off between killing
fishes underwater gaining rewards and resurfacing to fill up oxygen. The objective of the game is to
kill as many fishes as possible without running out of oxygen. The inherent trade-off between the
actions of killing the fish and filling up oxygen (you cannot kill fish unless you are underwater and
you cannot fill oxygen unless you are on the surface) makes the game difficult. An example screen
is shown in Figure 3.

We implemented DQN and its variants using Theano and Lasagne, which are deep learning frame-
works in Python. We interfaced our learning algorithms with ALE so that the learning algorithm
obtains pixel values and scores from ALE and outputs action values to ALE. We use an € (explo-
ration factor) value of 0.9 at the start of the training and reduce it to 0.1 after a million timesteps.
This is to encourage exploration at the start when it has no prior knowledge and to encourage ex-
ploitation after it builds some experience.

6.2 Results

For each game and each approach, we trained the agent for 30 epochs where each epoch consists of
1 million game timesteps. Each game took a training time of about 3-5 days on a modern GPU to
complete the required number of epochs. As the epoch number increases, the agent gains experience
and usually starts to play better than previous epochs.

In the game of Breakout, we observed that all three showed the same performance and there is no
advantage in using recurrent DQN and dueling architecture DQN over DQN. Figure 4 shows the
mean reward obtained by the agent trained using DQN, in each epoch (over the million timesteps).
Note that the training is mostly stable with small dips in the performance across epochs, which
mostly resulted due to the random exploratory nature of the agent.

Mean reward vs epoch Mean reward vs epoch

300 6000 — Dusling
Dan
—— Recurre
4500 DaN
Dan

Mean reward
Mean reward
S

Epoch Epoch

Figure 4: Results of DQN on Breakout(left) and Seaquest(right)

Figure 5 shows some of the filters learnt by DQN in the first convolution layer at the end of 30
epochs. We can see that the filters try to localize the position of the paddle and the ball on the game
screen. For example, the second filter has the characteristic of finding a pixel with different value
compared to its immediate surroundings. This is true for the ball in the game of Breakout which has
a width of a pixel and is mostly against a dark background. Similarly, the other filters try to localize
the position of the paddle and the tiles to get a better estimate of the current state of the game.

i i
e T —

Figure 5: Filters learnt by first convolution layer for Breakout

We present the results of different approaches against each other on the game of Seaquest in Figure
4. Note that the dueling DQN approach completely overshadows all the other approaches in terms
of its performance. Also, observe that the training is relatively stable than the other two approaches
due to the more frequent updates of the state value function. Among DQN and recurrent DQN, the
recurrent DQN is more stable in training as can be observed from the figure. DQN’s performance is
very erratic and noisy in comparison. Although, DQN ends up with a higher mean reward at the end
of 30 epochs, the relatively stable nature of recurrent DQN is preferred as it is consistent. A video
of the agents trained using our implementations of DQN and Dueling architecture DQN playing
Seaquest is uploaded at https://www.youtube.com/watch?v=TqIUM7glDCO.

6.3 Discussion

From the results, presented in section 6.2, we can observe that the dueling DQN performs better than
both the recurrent DQN and DQN approaches. We reason that this is due to the frequent updating
of the state value function V' in the case of dueling DQN that lets it capture the value of each state
more efficiently when compared to the other two. This efficient estimate is essential in the case
of complicated games like Seaquest, as the state-space is huge and we might not observe the same
state many times. In addition to this, since dueling DQN explicitly estimates the action advantage
function, it doesn’t run into the difference in scales issue (discussed in section 5.3) unlike DQN and
recurrent DQN.

Recurrent DQN, on the other hand, has a more stable training curve than DQN as it integrates
information across time more effectively. Hence, it captures long-range features in addition to short-
range features, whereas DQN can only capture features that are spread within 4 frames of each other.
But since the LSTM layer tries to account for long-range dependencies, the training procedure is
slow.

7 Conclusion and Future Work

In this report, we present the recently introduced and rapidly developing field of deep reinforcement
learning. We highlight the need for deep learning in reinforcement learning when dealing with real-
life high-dimensional control tasks. The challenges in introducing the paradigm of deep learning
into RL are detailed and we explain how modern approaches such as DQN tackle these challenges.
Further, we have introduced a few variants of DQN such as Recurrent DQN and Dueling architecture
DQN which show better performance in complicated games where there are long-range dependen-
cies and huge state-spaces. Finally, we ran several experiments using the games of Breakout and
Seaquest to compare the performance of these approaches and reason what happens under-the-hood
in these algorithms.

As a future work, we aim to try out more recent variants such as hierarchical deep reinforcement
learning [7], which have shown to capture extremely long-range dependencies in games like Mon-
tezuma’s revenge that demand deep exploration in the initial stages of training. We also want to
observe how prioritized experience replay, [12] works and examine its performance in games like
Seaquest, when compared to Dueling DQN.

https://www.youtube.com/watch?v=TqIUM7qlDC0

References

[1] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-
to-end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 2012.

[3] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate to solve riddles with deep distributed recurrent q-networks. Technical Report
arXiv:1602.02672, 2016.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580-587, 2014.

[5] Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps.
arXiv preprint arXiv:1507.06527, 2015.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

[7] Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B Tenenbaum. Hierar-
chical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.
arXiv preprint arXiv:1604.06057, 2016.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[9] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, DTIC
Document, 1993.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[11] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng.
Multimodal deep learning. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 689-696, 2011.

[12] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[13] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

[14] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
1998.

[15] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep
reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[16] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279-292,
1992.

	Introduction
	Related Work
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning

	Background
	Reinforcement Learning
	Convolutional Neural Networks

	Deep Q Learning
	Loss function
	Challenges
	Experience Replay

	DQN and its variants
	Deep Q-Network
	Recurrent Deep Q-Network
	Dueling Architecture DQN

	Experiments and Results
	Setup
	Results
	Discussion

	Conclusion and Future Work

