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Abstract

The availability of a large number of crowdsourced CAD
models of objects can be leveraged to solve the problem of
pose estimation of 3D objects in monocular images. Con-
volutional Neural Networks(CNNs) perform to the best of
their capability when they have been trained on a large
amount of labeled data. We explore how 3D models can
be used to generate lots of training images and annotations
in the form of keypoint locations. We propose to use CNNs
to first detect keypoints in rendered images. Once, we have
a correspondence between 2D points in a test image and
the 3D points on the CAD model, we can align 3D models
in 2D images.

1. Introduction

Consider the scenario where we are required to build a
computer vision system to estimate the pose of some ob-
jects of interest. If we are given the 3D models of all
these objects, how do we then go about solving the prob-
lem of object detection and pose estimation? The advent
of depth sensors has given tremendous impetus to tackle
this problem. It becomes significantly easier to detect ob-
jects(especially in cluttered scenes) in point clouds as com-
pared to monocular images. However, there can be many
scenarios where even depth sensors fail to be effective( out-
doors or in case of metallic objects). The above system
might be used in virtual and augmented reality applications
where we might not always have the luxury of having depth
as input. On the other hand, a good estimate of the object’s
pose will allow the system to perform 2D-3D alignment be-
tween the object in an image and its CAD model. This can
be used to reconstruct the scene with at least the objects of
our interest. Hence, it is still a worthwhile exercise to look
at the problem of pose estimation of 3D objects in monocu-
lar images.

Today many online platforms like 3D Warehouse, Grab-

CAD etc. host millions of crowdsourced CAD models.
These repositories can prove to be a source of large amounts
of training data. ShapeNet[2] provides a huge dataset of
such models organized by object category. It is possible to
look up CAD models of objects of daily use. Even in cases
where the exact CAD model of the object is not available,
it can be reconstructed by using lots of views of that object
or by using a good quality laser scanner. Once, we have the
model for the object we should be able to leverage it to solve
the task of object detection and pose estimation jointly.

Convolutional Neural Networks(CNNs) have proven ef-
fective in many applications in computer vision. However,
for CNNs to be able to extract the features most useful for
the task of pose estimation of an object would require lots
of images with reliable annotations at a very fine level. It
won’t be economical for humans to provide this level of su-
pervision for many objects. The availability of 3D models
and rendering software like Blender etc. allows us to the-
oretically generate infinite training data with automatically
labeled annotations.
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Figure 1. Keypoint Detection in objects means finding correspon-
dences between 2D pixels and 3D points on the model.

In Fig. [T} we can see an overview of the task we want to
solve. We propose to leverage the power of CNNs by using
them to detect keypoints on the object. These keypoints
are selected from the 3D points on the mesh of the CAD
model of the object. Once they are detected, we can use the
correspondences to determine the required transformation
matrix to estimate the pose of the object. In this project,
we first attempt to detect keypoints of objects using only



rendered data. But our initial approach does not transfer
trivially from rendered images to real images. But feature
for the task of coarse pose estimation transfers well. We
hope to take advantage of this by using the coarse estimate
of the pose to detect keypoints and then refine both the pose
estimation and keypoint detection in a second refinement
step.

2. Related Work

CNNs have revolutionized the field of computer vision.
Krizhevsky et al’s now landmark paper [5] describing their
neural network based approach for the task of image classi-
fication on the ImageNet dataset, paved the way for CNNs
to be applied successfully in a variety of vision tasks like
semantic segmentation, object detection and image caption-
ing. Researchers have also looked into how CNNs can be
used for the task of pose estimation. RenderForCNN][9]
solves the problem of pose estimation by converting it into
a classification problem. An object rotated at different ori-
entations can be thought of as being a different class al-
together. They showcase how using only rendered images
they were able to outperform existing state of the art meth-
ods in 3D object pose estimation. One reason for this might
just be that the real data might not have enough variation in
terms of views, lighting and models as the amount of im-
ages where 3D objects are labeled along with their pose is
less.

Crivellaro et al.[3]] present the idea of using CNNs to de-
tect keypoints on an object. They manually mark the few
keypoints that they are interested in and present a novel ap-
proach to estimates the pose using the keypoints. The train-
ing is done on a set of registered images of the target object
under different poses and lighting. While the approach is
novel, one might desire to remove the fine-grained keypoint
annotation step from the pipeline.

CNNs have also been used in a variety of ways[13]] [11]
[[7] [] for the task of keypoint detection for human pose
estimation. These approaches have been shown useful to
detect human pose by estimating the location of keypoints
of people. While the approaches are different, essentially
the task of human pose estimation is that of structured out-
put prediction. The output space for keypoint detection in
3D objects is also structured because of the geometric con-
straints of a rigid object. We feel that the approaches used
in human pose estimation can be leveraged to estimate pose
or viewpoints of objects.

The closest work which directly uses keypoints on ob-
jects to do pose estimation is that of Viewpoints and
Keypoints[12]. One of the key insights of the paper is that
the viewpoint of the paper directly decides the visibilty of
keypoints and hence, the visibility of keypoints can be used
to decide the viewpoint or equivalently the pose of the ob-
ject. They use both appearance and viewpoint to estimate

keypoint likelihood at each pixel in the image. Our work
differs from this in two aspects: the keypoints need not be
pre-defined or annotated manually in many images. Also
we stick to one instance of a category as a “keypoint” can
be defined without ambiguity only for a single instance.

3. Keypoint Detection using Synthetic Training
Data

We have the model of the object we are interested in.
We will stick with the running example of the model of a
Nikon D600 camera from the ShapeNet repository for the
following section. Now we are faced with the following
questions that we must answer before moving ahead:

1. What are the keypoints for this object?
2. How do we generate training data from the 3D model?

3. How do we train a CNN for the task of keypoint detec-
tion?

3.1. Definition of Keypoint

Ideally, we want keypoints that are visually discrimi-
native and geometrically informative spread evenly over
the surface of the object of interest. Conventionally, key-
points refer to semantically consistent points across many
instances of a category. For human pose estimation, head,
elbows, knees, wrist and shoulders serve as keypoints.
However, the nose of an aeroplane might look drastically
different for different instances of the same category. Sim-
ilarly, in the PASCAL3D dataset there are annotations on
racing cars for right headlights but in reality there are no
headlights on those cars. To avoid such ambiguity, we de-
fine keypoints as a subset of randomly sampled 3D points
in the point cloud of the model. Some of these points will
not be useful because they will not satisfy the two criteria
mentioned above. We propose that the CNN can be used to
decide which keypoints should be used for a particular ob-
ject. We first train a model to detect the entire chosen subset
of keypoints. We drop the keypoints whose detection rate is
below a threshold on a held out training set of rendered im-
ages. We retain only the ”good” keypoints for any task built
on top of keypoint detection like pose estimation.

3.2. Training Data Generation

We use RenderForCNN to generate synthetic training
images. By varying lighting conditions, viewpoints and dis-
tance of camera from the object, 13680 images of the cam-
era are generated. Random natural backgrounds are applied
from the SUN dataset. The rendering code is modified to
provide additional labels for the keypoints. For each se-
lected 3D keypoint, the camera’s projection matrix is used
to find the corresponding 2D pixel coordinate in the im-
age. The label also encodes if the keypoint is visible or not.



Along with these labels, we have the azimuth, elevation and
tilt of the object in that image.

3.3. Network Architecture

We had the option of training a Fully Convolutional
Network[6] to output a heatmap corresponding to the image
which represents the probability of a pixel being a particu-
lar keypoint. We ran some initial experiments using an FCN
which showed encouraging results. One interesting aspect
of using a FCN was that since the output was a probabil-
ity value for each pixel it resulted in heatmaps with mul-
tiple modes. Similar multi-modal heatmaps also occur in
pose estimation of humans. This is resolved by first doing
a coarse estimation of the keypoints and then using another
network to determine the fine estimation. Researchers also
suggest using probabilistic graphical models[10] to resolve
this problem. While this is an interesting approach and war-
rants further research, training a FCN is typically slower as
compared to a network with fully connected layers that does
regression to the coordinates of the object.
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Figure 2. VGG CNN M network is used with four outputs: coordi-
nates of the keypoints, visibility of the keypoints and the azimuth
and elevation angles of the object in the image.

We use a VGG-CNN-M-1024 network(Fig. [2] which
was introduced by Simonyan et al.[8]]. The network is mod-
ified to produce four outputs which are trained in the fol-
lowing manner:

1. Keypoint coordinates for each keypoint with euclidean
loss

2. Visibilty of keypoint coordinates with log loss

3. Azimuth angle of object(divided into bins of 5 degrees)
with log loss

4. Elevation angle of object(divided into bins of 5 de-
grees) with log loss

The last two losses are added because we have training
data for both these tasks as we render the training set and the
task of predicting keypoint visibility is closely related to the
task of predicting the pose of the object. Experimentally it
was found out that the pose estimation task boosts keypoint
detection.

4. Experiments
4.1. Setup

The 13680 rendered images are separates into a training
set of 12680 images and test set of 1000 images. The task
for which evaluation was carried out was keypoint detec-
tion using the PCK metric for evaluation. PCK is calculated
by finding the number of times a keypoint is correctly pre-
dicted. It is assumed to be correct if it lies within a nor-
malized distance « from the ground truth. The distance is
normalized by the size of the object in the image. However,
for 3D objects many a time the keypoint is not visible in
the image. Hence, it is easy to get a high PCK value if the
network predicts the keypoint is not present in the image all
the time. To get a better measure of the keypoint detection
task, we use VisPCK which is PCK when it is given that the
keypoint is visible in an image.

In the second experimental setup, we train a net-
work(VGG CNN M 1024 architecture) on a number of
models of cars to estimate the pose of the car without any
real images.

4.2. Results

Table [T]shows the results of some good keypoints. Only
six are shown due to lack of space. Note that the thresh-
old we are going for is very low as even if we might be
close in the normalized distance space we can match with
a nearby keypoint instead. Hence, PCK and visPCK values
are reported at an a of 0.05. From the table, it can be seen
that the additional supervision of pose, boosts the keypoint
detection rates by reducing the number of false positives.
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Figure 3. Keypoint detection does not transfer trivially to real im-
ages. Here on the left is a real image of the same camera and the
colour indicates the index of the keypoint.

While the results for keypoint detection in the rendered
image test set is good, it does not transfer trivially to real
images. Figure [3] shows a typical example of how the
keypoint detection fails. While some local structure is re-
tained in the relative positions of predicted keypoints that
are nearby. This motivates us to work on a two step process
to detect keypoints. The idea is that getting a rough esti-



Keypoint ID | PCK@0.05 w/o Pose | PCK@0.05 w Pose | VisPCK@0.05 w/o Pose | VisPCK@0.05 w Pose
45 0.51 0.94 0.68 0.67
16 0.38 0.93 0.66 0.66
7 0.46 0.94 0.66 0.62
17 0.50 0.94 0.61 0.61
6 0.35 0.92 0.64 0.61
42 0.39 0.91 0.60 0.55

Table 1. PCK and VisPCK metrics for the good keypoints. w/o pose means the network was trained without supervision of pose.

Predicted View
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Figure 4. Coarse pose estimation works well qualitiatively and
even detects pose in different types and colours of cameras.

VOC 2012 AVP | 5 degrees per bin | RenderForCNN
4 Views 49.7% 41.8%
8 Views 43.9% 36.6%
16 Views 37.9% 29.7%
24 Views 33.9% 25.5%

Table 2. Quantitative Analysis of Viewpoint Estimation on Cars
using RCNN[4] detection boxes

mate of the pose would help us get a good initial guess for
the keypoints. The second step would be to refine the pre-
dictions from the first stage. To do this we did some quali-
tative tests to see if the pose is being predicted correctly on
real images when training is only done on rendered images.
Coarse pose estimation is a task that is not as fine grained as
keypoint detection and transfers really well as can be seen in
Fig. [ which are images of different cameras from Google
Image Search. In Fig. [Jit can be seen that the network
is able to recover the rough pose of the object if the ground
truth box containing the camera is given. What is interesting
is that only one model of a camera was used for training and
somehow the network is able to predict the pose in different
cameras that look very different from the one it is trained
on. One reason why this might be happening is that the net-
work is able to realize that the coarse pose of the object is
encoded in global features like the silhouette of the object.
To test the hypothesis that coarse pose estimation is a task
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Figure 5. Qualitative pose estimation results on images of cameras
in the wild when the ground truth box is provided.

that can be transferred to real images quantitatively, we ren-
dered images of cars and tested on the PASCAL VOC 2012
validation dataset using annotations from PASCAL 3D[14].
Using no rendered images and the extra assumption of no
tilt, we were able to get competing results with RenderFor-
CNN.

5. Conclusion and Future Work

The project was an attempt to estimate the pose of an
object using keypoints and rendered data only. We trained
a network to predict keypoints on objects from only ren-
dered data. The key idea is to use the keypoints to esti-
mate the pose in real images. Doing this would lead to
the elimination of the tedious and expensive manual anno-
tation step from the pose estimation pipeline. While the
system assumes that the object of interest is known before-
hand but such a situation is not uncommon in robotics. We
presented a method to select good” keypoints on a CAD
model. While the results on rendered images is promising,
the task of pose estimation using keypoints in real images
still remains to be done. We plan to move ahead with the
task in two ways: use features pooled from the lower layers
for the task for keypoint localization and adding real images
in the training data in addition to the rendered images.
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