

Temporal Reasoning in Videos using Convolutional Gated Recurrent Units

Debidatta Dwibedi^{*} Pierre Sermanet Jonathan Tompson

Residency

Problem Setting

Action Recognition in Videos

Kinetics[1]

UCF101[2]

[1] Kay et al., The Kinetics Human Action Video Dataset [2] Soomro et al., UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild

Problem Setting

Action Recognition in Videos

It is <u>possible</u> to predict correct action correctly from single frame

Problem Setting

Human-Object Interaction Recognition in Videos

Opening

Closing

Transfer from left to middle

Transfer from middle to left

Impossible to predict correct actions when only one frame is input

Question 1

Are all action recognition from video problems equivalent?

Partial order is same

Google

Google

- 1. Difficult to categorize whole datasets into one category
- 2. Easier to test how much a dataset is biased towards one category

Kinetics[4]

Model	Normal (%)	Shuffled (%)	Reversed (%)
I3D	71.66	45.37	71.54
I2D	67.00	67.52	67.23

[3] Zhuo et al., Temporal Relational Reasoning in Videos [4] Xie et al., Rethinking Spatiotemporal Feature Learning For Video Understanding

Google

Question 2

Will there be one architecture for all action recognition tasks?

Spatio-temporal Averaging for Action

Google

RNNs Recap

From http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Unit

From http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Equations

$$\begin{aligned} z_t &= \sigma(W_{hz}h_{t-1} + W_{xz}x_t + b_z) & z_t &= \sigma(W_{hz}*h_{t-1} + W_{xz}*x_t + b_z) \\ r_t &= \sigma(W_{hr}h_{t-1} + W_{xr}x_t + b_r) & r_t &= \sigma(W_{hr}*h_{t-1} + W_{xr}*x_t + b_r) \\ \hat{h_t} &= \Phi(W_h(r_t \odot h_{t-1}) + W_xx_t + b) & \hat{h_t} &= \Phi(W_h*(r_t \odot h_{t-1}) + W_x*x_t + b) \\ h_t &= (1 - z_t) \odot h_{t-1} + z \odot \hat{h_t} & h_t &= (1 - z_t) \odot h_{t-1} + z \odot \hat{h_t} \\ \mathbf{GRU} & \mathbf{ConvGRU} \end{aligned}$$

Siam et al., Convolutional Gated Recurrent Networks for Video Segmentation

RNNs for Action Recognition (Ours)

Google

[3D[5] (Current SoTA/Base network of SoTA models on many datasets)

Results on Kinetics

Method	Accuracy @ 1	Accuracy @ 5
Spatio-temporal Averaging	71.5	89.5
GRU	70.6	88.4
ConvGRU	70.0	88.1
I3D	71.6	90.2

Recurrent Units do not provide performance boosts when problem is not sequential

Results on Human-object Interactions

Method	Accuracy @ 1	Accuracy @ 5
Spatio-temporal Averaging	20.5	48.2
GRU	35.4	63.3
I3D (Kinetics pre-trained)	39.9	67.8
ConvGRU	43.7	71.4
ConvGRU (Large)	45.9	74.5

Recurrent Units are effective for temporal reasoning tasks

Question 3

What is encoded in the hidden state of the recurrent units?

We want to get insight into what is being encoded in the hidden states.

Experiment:

- 1) Choose 2 videos from a given class
- 2) Embed both videos using ConvGRU model
- 3) For each frame in video 1 look up nearest neighbours in video 2

Query Video

NN from Video 1

NN from Video 2

Flipping Pancake

Query Video NN from Video 1 NN from Video 2

Folding Napkins

Alignment more prominent in human-object interactions

Positions of objects, states of objects (open/closed, filled/empty), abstract concepts like count are encoded

Tricks for using RNNs effectively

- 1) Randomly sample frames in video
- 2) Layer normalization
- 3) Dropout at each timestep
- 4) Reduce number of features in the RNN
- 5) Reduce number of features in input (using bottlenecks) to RNN

Key Takeaways

- 1) All action recognition tasks are not equivalent
- 2) Depending on the task, different architectures are useful
- 3) RNNs more useful if the task of action recognition is sequential in nature
- 4) Hidden states capture interesting transitions for temporal reasoning tasks

The End