Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
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Patch-level Realism

Occlusion

Instance Detection

Problems with manual data collection - Difficult to model global realism Viewpoint

* For feature rich regions, local context matters more
than global context.

* Patch-level realism is easy and produces useful
training data Patches that look realistic in unrealistic scenes Scale

Which synthesizing factors matter the most?

* Physically creating and
capturing scenes for instance
detection is a major
bottleneck
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Blending and Occlusion modeling give the most performance boost

limited data Easy misses by object detector trained on real data Code available at: https://goo.gl/imXRt7



