Carnegie Mellon University

Overview

Goal

 Create annotated datasets for instance detection with minimal manual effort

Key Ideas

- For feature rich object instances, local context matters more than global context
- Cut real instance masks and paste on real backgrounds to create data
- Multiple blending modes reduce pasting artifacts

Outcome

- Simple and fast method to generate images. Outperforms slower complex methods.
- 10% real + synthetic data performs as well as 100% real data.

Learn **Detections on Real Images**

Object Detection Granola Bars Cups Granola Bar 1 Granola Bar 2 Cup 1 Cup 3 Cup 2 Instance Detection

Problems with manual data collection

- Physically creating and capturing scenes for instance detection is a major bottleneck
- Ensuring visual diversity in terms of views, occlusions, backgrounds and lighting is challenging
- Generalization to new environments is hard with limited data

Easy misses by object detector trained on real data

Instance Detection

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection Debidatta Dwibedi Ishan Misra Martial Hebert Carnegie Mellon University

mAP

Blending and Occlusion modeling give the most performance boos

Dataset	Real Images from GMU	Semantic-and- Geometry Aware Synthesis	Synthetic Images (Ours)	Semantic-and- Geometry Aware Synthesis + Real	Synthetic Images (Ours) + Real Images
mAP	86.3	51.7	76.2	85.0	88.8

50

Synthetic data vs. Real Data

- Synthetic data contains real images and doesn't hurt performance

Dataset Real Images from GMU Synthetic Images Synthetic Images + Real Images

Experiments

Object Instances

- Random Backgrounds
- **Real Images Unseen Scenes Dataset**
- **Object Detection Model**

BigBIRD **UW RGBD Dataset** GMU Kitchen Scenes Active Vision Dataset Faster R-CNN

Comparison to existing approaches

Our approach outperforms existing approaches that consider geometry and semantics while synthesizing scenes

Local features matter more because the model considers features in a region

There might be a degradation of performance of models trained with real images on new datasets complementary information to

Qualitative Results

