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Key Ideas
• For feature rich object instances, 

local context matters more than 
global context

• Cut real instance masks and paste 
on real backgrounds to create data

• Multiple blending modes reduce 
pasting artifacts

Goal
• Create annotated datasets for 

instance detection with minimal 
manual effort

ApproachOverview Experiments

Outcome
• Simple and fast method to 

generate images. Outperforms 
slower complex methods.

• 10% real + synthetic data 
performs as well as 100% real data.
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• Physically creating and 
capturing scenes for instance 
detection is a major 
bottleneck

• Ensuring visual diversity in 
terms of views, occlusions, 
backgrounds and lighting is 
challenging

• Generalization to new 
environments is hard with 
limited data Easy misses by object detector trained on real data

• Naïve pasting of objects results in pixel artifacts
• Synthesizing same scene with multiple blending 

modes improves performance

Typical false positives seen when 
trained with no blendingNo Blending Gaussian Blurring Poisson Blending

• Difficult to model global realism
• For feature rich regions, local context matters more 

than global context.
• Patch-level realism is easy and produces useful 

training data Patches that look realistic in unrealistic scenes
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mAP 73.7 -7.8 -4.0 -5.4 -1.9 -10.6 +2.5

Qualitative Results

Comparison to existing approaches
• Our approach outperforms existing approaches that consider geometry and 

semantics while synthesizing scenes
• Local features matter more because the model considers features in a region
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mAP 86.3 51.7 76.2 85.0 88.8

Code available at: https://goo.gl/imXRt7
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Which synthesizing factors matter the most?

Synthetic data vs. Real Data 
• There might be a degradation of 

performance of models trained 
with real images on new datasets

• Synthetic data contains 
complementary information to 
real images and doesn’t hurt 
performance

Dataset mAP

Real Images from GMU 41.9

Synthetic Images 36.5

Synthetic Images + Real Images 51.1

Problems with manual data collection

Object Instances BigBIRD

Random Backgrounds UW RGBD Dataset

Real Images GMU Kitchen Scenes

Unseen Scenes Dataset Active Vision Dataset

Object Detection Model Faster R-CNN
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