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Abstract— In this work we explore a new approach for
robots to teach themselves about the world simply by observing
it. In particular we investigate the effectiveness of learning
task-agnostic representations for continuous control tasks. We
extend Time-Contrastive Networks (TCN) that learn from
visual observations by embedding multiple frames jointly in
the embedding space as opposed to a single frame. We show
that by doing so, we are now able to encode both position and
velocity attributes significantly more accurately. We test the
usefulness of this self-supervised approach in a reinforcement
learning setting. We show that the representations learned by
agents observing themselves take random actions, or other
agents perform tasks successfully, can enable the learning
of continuous control policies using algorithms like Proximal
Policy Optimization (PPO) using only the learned embeddings
as input.

I. INTRODUCTION

Many state-of-the-art approaches for various computer
vision tasks incorporate a visual representation learning
step. Often this pre-training is performed using a super-
vised surrogate loss, where ample training data is readily
available; most commonly the large-scale ImageNet [1] or
COCO [2] classification datasets. It would be useful if one
could likewise take advantage of supervised pre-training for
pixel-based robotic control. However, it is not entirely clear
what is the right supervision required for such tasks.

Alternatively to supervised learning, recent self-supervised
approaches, such as Time-Contrastive Networks [3] (TCN) or
Position Velocity Encoders [4] (PVE), have shown encour-
aging results when it comes to constructing robust visual
representations suitable for Reinforcement Learning (RL)
and robotics applications, without the need for expensive
supervised labels. These approaches learn representations
from observations in the domain of interest. The common
thread in these approaches is the construction of auxil-
iary losses that push the model to learn useful structural
priors like temporal consistency, view invariance etc. PVE
enabled learning continuous control policies in simulated
environments while TCN was shown to help in imitation
learning where a robot arm is used to pour liquids into a
vessel. However, both approaches have certain drawbacks. In
TCN, the embedding is conditioned on a single frame. This
makes it difficult for learning motion cues. Likewise, PVE
requires the tuning of a set of priors for each environment.
Furthermore, representation learned using these techniques
have yet to match the performances of policies trained
directly on true state.
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Fig. 1. Given two viewpoints of the same event, we sample clips from the
video and embed them to produce multi-frame Time-Contrastive Network
(mfTCN) embeddings for each view. In order to train the deep network, we
consider the clips at the same time from different views to be similar and
clips from different time steps to be different.

However, despite the limitations of recent self-supervised
techniques, such approaches learn representations with num-
ber of desirable properties that we wish to exploit in this
work: 1. the embedding can be used to discriminate be-
tween different states (including motion attributes) visited
in the course of an observation without the need for ex-
plicit state labels. 2. the embedding should be robust to
changes in viewpoint, thus enabling third-person learning-
from-demonstration for which large amounts of readily
available training data exists (e.g. YouTube videos). 3. the
embedding should be amenable to online adaption in new
environments, without the need for additional labels.

The contributions of this paper are:
• We introduce a multi-frame variant of TCN which we

call multi-frame Time-Contrastive Network (mfTCN),
that encodes temporal latent states (such as velocity,
angular velocity, acceleration, etc) better.

• We show that these representations can be used as input
for PPO[5] trained policies on simulated robotic control
tasks in DeepMind Control Suite [6].

• We also show that the policies learned using mfTCN
are competitive with true-state based policies.

II. RELATED WORK

Continuous control environments State-of-the-art per-
formance of Reinforcement Learning (RL) algorithms has
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improved significantly in recent years and end-to-end, from-
pixel policies have shown success on a number of bench-
marks including Atari games [7] and continuous control [8].
Tassa et al. [6] introduced a compelling set of benchmark
environments called Control Suite, which we make use of in
this work. They are based on tasks initially introduced in the
Mujoco environment by Todorov et al. [9]. Another popular
benchmark for similar tasks is OpenAI’s Gym [10].

Learning state representations using priors Learning
useful state representations, in either an unsupervised or
semi-supervised setting, has been a long-studied field in
robotic control. Scholz et al. [11] used physics based pri-
ors for representation learning and showed that incorporat-
ing these improved performance for model-based RL. In
a follow-on work, Jonschkowski et al. [12] used similar
physics-based robotic-priors to learn state representations
consistent with the dynamics of the physical task. This
framework was extended in [4] to include additional prior
terms to capture multi-frame dynamics and where state
representations were learned from visual observations only.
Similarly to this work, state representations are learned
from the observations produced by random agent actions
in a simulated environment. Lesort et al. [13] introduce the
reference point prior in their work and also showcase transfer
of policies learnt in simulation to real robots.

Self-supervised learning from visual observations There
have been multiple successes in using self-supervised pre-
training approaches to learn visual representations useful for
the task of robotics and reinforcement learning in recent
years. Watter et al. [14] learn a locally linear latent space
that allows them use optimal control algorithms to follow
trajectories in the embedding space. van Hoof et al. [15]
use variational auto-encoders to stabilize a reinforcement
learning system based on visual and tactile data streams.
Finn et al. [16] successfully learn a model that encodes an
input image in a low dimensional space. The model is trained
to reconstruct the input image. The learned embedding is
provided as input along with the true state of the robot. This
joint representation enables the robot to preform complicated
tasks like rice scooping and looping hooks which were not
possible without the visual input. Munk et al. [17] propose
an approach to map their input to a useful hidden state using
”predictive priors” before training their Actor-Critic model
using reinforcement learning. Agrawal et al. [18] introduce
an interesting framework in which an agent first learns a
model of the world by observing the effect of the random
actions it takes. This learned representation can then be used
to perform tasks that require multi-step decision making.
Sermanet et al. [3] use time as a supervisory signal to learn
the structure present in videos to learn a robust task-agnostic
visual representation. Dosovitskiy et al. [19] show that they
can learn to take actions in an environment by predicting
future state changes.

III. APPROACH

Our approach consists of two phases: first is the task-
agnostic representation learning phase followed by the task-
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Fig. 2. In the above figure, we showcase how we sample a batch for
training our model. As shown in the top row, we sample clips from both
views simultaneously where each clip consists of 3 frames with a stride of 3
between each frame. We ensure that the clips are not overlapping and have
at least α time steps gap between them. With just two samples, we can see
the strength of the self-supervisory signal which forces the model to look
for differences in similar looking frames while also looking for similarities
between different views.

specific control policy learning phase.

A. Learning Representations from Observations

In this phase, an agent first learns representations in a
task-agnostic manner. The agent can learn from a variety of
observations: from passive observations of its environment,
from demonstrations by other agents, and from observing
itself act in the world. This task-agnostic learning is versatile
in the sense that it allows the model to learn from the world
and from other agents (i.e. even when it does not have access
to true state or even rewards) but also from itself. In this
work, we restrict ourselves to the multi-view setting where
for each observation we have two synchronized views (the
model could be trained with more views as well).

We are provided with multiple videos as input from which
an agent can observe and learn good representations of the
world. As in [3], we use time as a supervisory signal. In
Figure 2, we show how we create a training batch from the
given videos. We consider clips at time t from all given
viewpoints to be similar to each other (they will attract
each other in embedding space). Additionally, these clips
are also considered dissimilar to any clip that is beyond
α steps in time in any view (dissimilar clips will repulse
each other in embedding space). To encourage the network
to learn representations that encode the above intuition, we
learn a metric space with the embeddings produced by a base
network.

Unlike [3], instead of embedding a single frame at each
timestep we embed multiple frames at each timestep. The
motivation for embedding multiple frames is to allow the
network to reason not only about the states of objects but also
exploit the motion cues present in a scene. As demonstrated
in Sec. IV and predictably, single frame TCN has difficulty
encoding motion since it embeds a single frame at a time.
We alleviate this problem in the multi-frame version by
embedding multiple frames jointly, which makes it easier
to encode motion cues and velocity of objects.
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Fig. 3. Architecture used to extract mfTCN embeddings from a given
sequence of frames. The 3D convolution layer is added to aggregate
temporal information across frames and encode motion cues in the mfTCN
embedding.

We present the architecture of the deep network used in
mfTCN in Figure 3. This network takes a clip that is a
sequence of frames as input and jointly embeds them in a
low-dimensional space. We use the n-pairs loss introduced
in [20] to train our network. For explanation purposes, we
borrow the terms “anchor, positive and negative” from the
triplet loss [21] literature because similar concepts are used
for the n-pairs loss. In general, an anchor-positive pair is a
pair of samples that we want to be closer to each other in
embedding space than the anchor-negative pair. The loss aims
at learning a metric embedding which clusters data samples
of the same category closer to each other while pushing
them farther from samples from different category in the
learned embedding space. To be able to use the n-pairs loss in
a time-contrastive setting, we sample non-overlapping clips
at the same timestep from multiple views. Clips sampled
from different views but at the same time are positive while
clips sampled at a different time are considered as negatives
irrespective of the view. This heuristic provides the required
supervisory signal to train our model.

B. Learning Control Policies

In order to test the utility and robustness of our em-
beddings we decide to perform continuous control tasks
on top of these learned representations. Continuous control
algorithms usually take the true state (joint angles and end-
effector positions) as input. We want our learned representa-
tion to be a drop-in replacement for the true states required
for a particular task. We choose a PPO [5] as the on-policy
optimization algorithm that allows us to learn continuous
control policies.

IV. EXPERIMENTS

A. Regression to velocities and positions of Cartpole

We aim to show that the mfTCN embeddings are able to
encode velocities and positions of objects and parts of agents.
Precise information about these quantities are important to
solve continuous control tasks. In order to measure this
quantitatively, we collect multi-view videos of the Cartpole
environment from the Deepmind Control Suite [6]. We use
the default multiple camera setup in their environment.
We learn a multi-frame TCN embedding from the videos

collected where the agent is taking random actions. We
follow the experimental setup of [4] in which they train
regressors on top of their embeddings using the true states
provided by the simulator. Like Position Velocity Encoders,
we also concatenate the difference between embeddings at
time t and time (t− 1) along with our embedding. We train
3 fully connected layers of 256 dimensions on top of the
learned embedding with an Adam optimizer and learning rate
of 0.001. The trained regressors are then shown frames from
the validation set and predict the true states of the agent. We
use a train/test split of 160000 and 20000 frames for this task.
The results of this experiment are reported in Table I. We
observe that the multi-frame embeddings are able to encode
the true position and velocity better. Additionally, the Mean
Squared Error (MSE) decreases when we increase the size
of the embedding learned. Interestingly, we do not explicitly
train for the embedding to encode position or velocity. But
it stands to reason the model needs to encode them, among
other attributes, to differentiate between clips at different
timesteps while still knowing that multiple views at the same
time should encode the same state.

B. Policy learned on TCN embedding from Self-Observation

In this experiment we consider the scenario where an agent
is able to observe itself in its environment. We consider the
Swing-up task in the Cartpole domain of Deepmind’s Control
Suite. The task is to swing the pole up by applying forces at
the base of the cart and then to balance it without deviating
too much from the center of the base. The physical model is
similar to the one presented in [22]. In order to collect data
to train the mfTCN, the agent performs random actions with
random initial states. We use the default camera setup. Note
in this setup the second camera is moving with the agent.

We use the Proximal Policy Optimization (PPO) [5] algo-
rithm to learn a policy on top of the learned mfTCN embed-
dings. Usually the true states (like positions of objects, ve-
locities of joints etc.) are provided as input to learn a policy.
We replace the true states with the learned low-dimensional
representation as input to PPO. We report the mean and
standard deviation of rewards for 100 episodes/rollouts at
test time. Following [6], we rollout for 1000 steps for each
episode.

The results of this experiment are reported in Table II.
We observe that if we train both the representation learning
network and the policy network in parallel on raw pixels the
agent is not able to learn the task (row 3). As a baseline, we
use embeddings from the Position Velocity Encoders [4] to
train a PPO policy and that results in the agent performing
better (row 4). We observe that the mfTCN trained on one
frame at the same resolution (row 5) is able to outperform
both raw pixels and PVE as input by a large margin. The
performance improves significantly when we jointly embed 5
frames (row 6). This highlights the advantages of embedding
multiple frames jointly as opposed to only using a single
frame. We find performance of mfTCN improves again when
we provide input at a higher resolution (rows 7 and 8).
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TABLE I
RESULTS ON REGRESSING CARTPOLE POSITIONS AND VELOCITIES FROM MFTCN EMBEDDINGS

MSE MSE in Static Attributes MSE in Motion Attributes
Lookback
window Average Position Motion xcart sin(θpole) cos(θpole) ẋcart θ̇pole

1 0.0911 0.0052 0.2201 0.0045 0.0037 0.0072 0.3716 0.0686
2 0.0401 0.0019 0.0974 0.0014 0.0027 0.0015 0.1456 0.0492
4 0.0198 0.0013 0.0476 0.0008 0.0020 0.0013 0.0748 0.0203

Since, we learned an MFTCN model from multiple views,
we do not need to retrain a different representation learning
model to train another policy for the second camera, which
in this case is moving. We use the same mfTCN network
and train another PPO policy and find that the version of
mfTCN which embeds 5 frames jointly (row 10) works much
better with the moving camera as compared to the one which
embeds only one frame (row 9).

TABLE II
RESULTS ON CARTPOLE SWINGUP TASK

# look- Cumulative
back From Reward

Input to PPO Frames Pixels Resolution Mean Std.
Random State 1 121.45 11.98
True State 1 861.41 3.46
Pixels (CNN) 1 X 96× 48 283.82 42.88
PVE [4] 1 X 96× 48 457.27 51.16
mfTCN 1 X 96× 48 550.98 53.40
mfTCN 5 X 96× 48 701.30 80.14
mfTCN 1 X 160× 160 759.33 77.77
mfTCN 5 X 160× 160 787.47 67.80
mfTCN (moving) 1 X 160× 160 691.77 85.28
mfTCN (moving) 5 X 160× 160 811.10 41.80

C. Policy learned on TCN from Observing Other Agents
Contrary to the previous experiment, we consider the

scenario where an agent is able to observe other similar
agents performing a given task. In particular, we consider
the Cheetah environment which is a tougher control task than
Cart-pole in terms of having a larger state space and possible
number of actions. We are provided with demonstration
videos of the Cheetah agent walking successfully. These
demonstrations were generated by training a PPO policy
on the true state of the agent. We use the default camera
setup for this environment. We train our mfTCN model on
these videos only. One manner in which these demonstrations
differ from the previously considered scenario where an
agents performs random actions is that the agent only ever
sees successful examples of walking and does not see the
plethora of states a Cheetah encounters while it is learning
to walk. This is similar to the real-life imitation learning
settings where it is easy to gather successful demonstrations.
The big question is: can we learn a representation useful
for learning the task at hand by only observing successful
demonstrations? With this experiment we show that it is
possible to do so for the Walk task in the Cheetah domain.
Similar to the above section, we report the mean and standard
deviation of rewards for 100 episodes/rollouts at test time.
Following [6], we rollout for 1000 steps for each episode.

TABLE III
RESULTS ON CHEETAH WALK TASK

Cumulative
Reward

Input to PPO Mean Std.
Random State 28.31 3.62
True State 390.16 44.85
Pixels (CNN) 146.14 29.51
mfTCN 360.50 76.52

D. Discussion

We show that our approach can encode the proprioceptive
states of an agent from pixels. Like [3], we expect the
approach to also learn rich representations about relevant
objects in the environment. One drawback of the present
approach is that the embedding can choose to fixate on
some objects in the environment while ignoring others.
Even though in our experiments we only used the learned
embeddings to learn control policies, in a more practical
setting one should use both the embedding as well as the
proprioceptive states as input. Although our representation
learning approach is self-supervised, it still relies on being
presented with a reasonable coverage of possible states. Such
issues may be alleviated with an explicit exploration strategy
(like intrinsic motivation [23]) or expert demonstrations.

V. CONCLUSION

In this paper, we extended TCN by allowing it to embed
multiple frames jointly. We show that by doing so, we get
better estimates of positions and velocities which leads to
better performance in continuous control tasks. We show that
this approach to learning robust visual representations allows
us to use policy learning algorithms effectively on the learned
representations as opposed to the true state. The results on the
simulated environments are encouraging and we aim to use
this model to learn more robust policies on real robots. In the
future, we also want to be able to refine the representations
based on any new states that the agent encounters as it starts
learning control policies.
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