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Problem Setting Our Solution: Multi-frame TCN (mfTCN)
Continuous Control using Visual Input Sampling Anchor, Positive, and Negative Tuples
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Research Questions
1. How can we learn good representations from video for model free Attraction
RL?
2. How do we encode motion features in our representations?
Related Work
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A , Pouring dataset: Alignment between Views / Attributes Classification
. Method # of Alignment Static Motion
frames Error (%) Error (%) Error (%)
TCN [4] 1 16.21 18.92 30.17
View 1 mfTCN (ours) 8 14.27 17.25 24.83
mfTCN (ours) 16 11.29 16.79 18.30
MfTCN (ours) 32 8.86 19.36 20.88
Regression to Position and Velocity of Cartpole from Embeddings
Method # of Position MSE Velocity MSE
frames (x Std. Dev.) (x Std. Dev.)
Views CN [4] 1 0.0052 0.2201
mfTCN (ours) 2 0.0019 0.0974
= . | mfTCN (ours) 3 0.0014 0.0550
| | > mfTCN (ours) 4 0.0013 0.0476
time Performance on Controlling CartPole
Why Encode Motion in Embeddings? input to PPO Avg of 100 runs
. . . . Random State 121.5
At inference time, multiple frames encode motion features
True State 861.4
Raw Pixels 283.8
PVE [2] 457.3
TCN 759.3
TCN (Moving Cam) 691.7
MmfTCN /87.5
mfTCN (Moving Cam) 811.1
Performance on Controlling Cheetah
Difficult for single frame visual embeddings to encode motion features like velocity ‘ Input to PPO Avg of 100 runs
During training, multiple frames provide more context Random State 28.3
True State 390.2
Raw Pixels 146.1
MmfTCN 360.5
References
[1] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to control: A locally linear latent dynamics model for control from
Sotled [ “Pves: Position-velocity encoders for unsupervised learning of structure
Frame pairs on the left are ambiguous as they are visually similar but at different Liiféiéfé‘fi‘?&“!ﬁi%? Hafner'J'SChO'z’and.M' vedmier “'P t | octty encoderst | pervised | ”g Fetructured
time steps. Neighbouring frames not only help the model disambiguate betWeen | (115 cermancs ¢ Lynon 1. Chabotar, . o E. Jang, 5, Schasl and . Lovine. Time-contrastive networke: Sif-supervised learming
I 1 from video”
SUCh frameS, bUt aISO reason abOUt OCCIUSIOn and motion cues. [5] J. Scdhulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms”




