

Self-Supervised Representation Learning for Continuous Control

Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, Pierre Sermanet

Problem Setting

Continuous Control using Visual Input

Our Solution: Multi-frame TCN (mfTCN)

Sampling Anchor, Positive, and Negative Tuples

number of frames = 3, stride = 3

Related Work

2. How do we encode motion features in our representations?

Previous work[1,2,3,4] on learning good visual representations for continuous control via self-supervised approaches have focused on inducing desirable properties like local linear dynamics or view invariance on the learned embeddings. In this work, we enable learning of representations that encode better motion features.

Time Contrastive Networks (TCN)^[4]

repulsion

Results

Pouring dataset: Alignment between	Views / Attributes Classification
------------------------------------	--

Method	# of frames	Alignment Error (%)	Static Error (%)	Motion Error (%)
TCN [4]	1	16.21	18.92	30.17
mfTCN (ours)	8	14.27	17.25	24.83
mfTCN (ours)	16	11.29	16.79	18.30
mfTCN (ours)	32	8.86	19.36	20.88
Regression to	Position a	and Velocity of C	artpole from	Embeddings
Method	# of frames	Position MSE (x Std. Dev.)	Veloc (x Sto	ity MSE d. Dev.)
TCN [4]	1	0.0052	0.2	2201
mfTCN (ours)	2	0.0019	0.0	0974
mfTCN (ours)	3	0.0014	0.0	0550
mfTCN (ours)	4	0.0013	0.0476	

Why Encode Motion in Embeddings? At inference time, multiple frames encode motion features

Performance on Controlling CartPole

the second s

Input to PPO	Avg of 100 runs
Random State	121.5
True State	861.4
Raw Pixels	283.8
PVE [2]	457.3
TCN	759.3
TCN (Moving Cam)	691.7
mfTCN	787.5

Difficult for single frame visual embeddings to encode motion features like velocity

During training, multiple frames provide more context

Frame pairs on the left are ambiguous as they are visually similar but at different time steps. Neighbouring frames not only help the model disambiguate between such frames, but also reason about occlusion and motion cues.

mfTCN (Moving Cam)

811.1

Performance on Controlling Cheetah

	Input to PPO	Avg of 100 runs
5-2	Random State	28.3
	True State	390.2
	Raw Pixels	146.1
	mfTCN	360.5

[1] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, "Embed to control: A locally linear latent dynamics model for control from raw images"

[2] R. Jonschkowski, R. Hafner, J. Scholz, and M. Riedmiller, "Pves: Position-velocity encoders for unsupervised learning of structured state representations"

[3] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, "Deep spatial autoencoders for visuomotor learning"

[4] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine, "Time-contrastive networks: Self-supervised learning from video"

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms"