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Self-Supervised Representation Learning
for Continuous Control

Continuous Control using Visual Input

Problem Setting
Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, Pierre Sermanet

Time Contrastive Networks (TCN) [4]

Research Questions

Why Encode Motion in Embeddings?

References

1. How can we learn good representations from video for model free 
RL?
2. How do we encode motion features in our representations?

At inference time, multiple frames encode motion features

During training, multiple frames provide more context
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Difficult for single frame visual embeddings to encode motion features like velocity
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Frame pairs on the left are ambiguous as they are visually similar but at different 
time steps. Neighbouring frames not only help the model disambiguate between 

such frames, but also reason about occlusion and motion cues.
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Results

Method # of 
frames

Position MSE 
(x Std. Dev.)

Velocity MSE 
(x Std. Dev.)

TCN [4] 1 0.0052 0.2201

mfTCN (ours) 2 0.0019 0.0974

mfTCN (ours) 3 0.0014 0.0550

mfTCN (ours) 4 0.0013 0.0476

Input to PPO Avg of 100 runs
Random State 121.5

True State 861.4
Raw Pixels 283.8

PVE [2] 457.3
TCN 759.3

TCN (Moving Cam) 691.7
mfTCN 787.5

mfTCN (Moving Cam) 811.1

Regression to Position and Velocity of Cartpole from Embeddings

Performance on Controlling CartPole

Input to PPO Avg of 100 runs

Random State 28.3

True State 390.2

Raw Pixels 146.1

mfTCN 360.5

Performance on Controlling Cheetah
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Previous work[1,2,3,4] on learning good visual representations for 
continuous control via self-supervised approaches have focused on 
inducing desirable properties like local linear dynamics or view 
invariance on the learned embeddings. In this work, we  enable learning 
of representations that encode better motion features.
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Method # of
frames

Alignment
Error (%)

Static
Error (%)

Motion
Error (%)

TCN [4] 1 16.21 18.92 30.17

mfTCN (ours) 8 14.27 17.25 24.83

mfTCN (ours) 16 11.29 16.79 18.30

mfTCN (ours) 32 8.86 19.36 20.88

Pouring dataset: Alignment between Views / Attributes Classification


