Synthesizing Scenes for Instance Detection

Synthesizing Scenes for Instance Detection

Debidatta Dwibedi

Thesis Committee

Martial Hebert Michael Kaess Ishan Misra

INTRODUCTION

Common Vision Tasks

Classification

Classification + Localization

Object Detection

CAT

CAT

CAT, DOG, DUCK

Object Detection

Large Annotated Datasets

14,197,122 labeled images as of April 2017

Humans annotate images on Mechanical Turk

Deep Learning

GPUs

IM GENET

INSTANCE DETECTION

Comparison with Object Detection

Instance Detection

Instance v/s Object Detection

Object Detection

Instance Detection

Object Detection

o Large annotated datasets

• Better machine learning models • Faster computation

IM GENET

Instance Detection

Useful for instance detection too

Large annotated
datasets

Instance Detection

Doesn't exist for all applications

Useful for instance detection too

• Better machine learning models • Faster computation

Large annotated datasets

IM AGENET

CREATING ANNOTATEDDATASETS

Methods used to collect annotated data

Data Collection for Object Detection

- 1. Retrieve image of object from the Internet
- 2. Label each collected image

(a) Category labeling

(b) Instance spotting

Data Collection for Instance Detection

- 1. Create scenes with relevant instances
- 2. Capture images
- 3. Manually label each image

Can we automate the annotated data creation process?

VIDEOS

Leveraging videos to reduce annotation effort

Advantages of using Video

- 1. Videos are easy to capture
- 2. Propagate bounding boxes from one frame to the next using object tracking

Reduction in Effort

- 1. Need to manually label 10X fewer frames to get a dataset of equivalent size
- 2. No reduction in performance of object detector

3D RECONSTRUCTION

Using SFM to produce pose and bounding box annotations for objects

ObjectNet3D GUI

1. Too much manual effort to annotate pose

Render-For-CNN

- 1. No real images of objects used in training
- 2. Dearth of high-quality models of everyday instances

Can we do better if we have access to the object?

Record Object from Multiple Views

Structure from Motion

Green points represent camera locations in 3D

Structure from Motion

3D points belonging to the object Project 3D points to 2D to get bounding boxes

Annotation Results

Azimuth = 22

Azimuth = 54

Azimuth = 91

Azimuth = 254

Azimuth = 272

Azimuth = 311

Annotation Results

Azimuth = 2

Azimuth = 47

Azimuth = 107

Azimuth = 240

Azimuth = 314

Turntable Results

Can also collect images by using multiple cameras and a turntable to rotate the object

SYNTHESIZING SCENES

Generating synthetic data for the task of instance detection

Proposed Approach

Cut

Object Instances

Background Scenes

Paste Generated Scenes (Training Data)

Learn Detections on Real Images

• CHALLENGES

Realism

Region based Object Detection Models

State of the Art Techniques attempt to classify regions Do we need global realism in training images?

Rendering with Structure Supervision

Input image

Annotate geometry

Annotate lights

Auto-refine 3D scene

Compose scene & render

Final composite

Ensuring global structure is difficult and involves labeling effort

Semantics-and-Geometry Aware Scene Synthesis

Deep learning based approaches can provide decent estimates of semantics and surface normal estimation

Semantics-and-Geometry Aware Scene Synthesis

Input to Classification part of Fast R-CNN is only the region Do we need to render keeping global realism in mind?

Patch Realism

decide from this patch if image is real or synthetic?

Patch Realism

Domain Adaptation

Will the neural network able to detect objects in real images if it trained on synthetic images?

Neural Networks Learn Artifacts Easily

Output of the object detector when trained naively

Noise Can Add Robustness

Raw Input

Corrupted Input

Reconstructed Input

Adding noise adds robustness to the auto-encoder at test-time What sort of noise will be useful for our application?

Different Modes of Blending

No Blending

Gaussian Blurring

Poisson Blending

Various blending modes add robustness to the object detector

Dataset Diversity

Misses by a detector trained on hand-annotated scenes These views were not present/labeled in the training set

Dataset Diversity

Ground Truth Images

Corresponding False Positives

False positives by detector trained on hand-annotated scenes

Proposed Solutions

Realism

Paste real patches on real images

Domain Adaptation

Add robustness by adding different
blending modes for the same scene

Dataset Diversity

 Capture all views of an object and render adding different modes of data augmentation

Proposed Pipeline

Proposed Pipeline

4. Synthesize <u>Same</u> Scene with <u>Different</u> Blending Modes

Examples of Synthesized Images

Which synthesizing factors matter most?

Experimental Setup

Instance Images Dataset: (Big) Berkeley Instance Recognition Dataset

125 Instances, 600 viewpoints of each instances

Mask Generation

Fully Convolutional Network that predicts background/foreground pixels

Depth map used as proxy for foreground during training

GMU Kitchen Scenes

- **11 Instances from BigBIRD**
- 9 Kitchen Scenes
- 6,728 Annotated Frames for Evaluation

Effect of Blending

Blending Mode	mAP on GMU Dataset
No Blending	65.9
Gaussian Blending	68.9
Poisson Blending	58.4
All modes of Blending	72.4
All modes + Same Image	73.7

Effect of Data Augmentation

Data Augmentation	mAP on GMU Dataset
Base Model	73.7
w/o 2D Rotation	69.7
w/o 3D Rotation	68.3
w/o Truncation	71.8
w/o Occlusion	63.1
w Distractor Objects	76.2

Results on GMU Kitchen Scenes

Real Data

Synthetic Data

Synthetic + Real Data

1st Row: Synthetic data recognizes occluded instance

2nd Row: Synthetic data detects cereal box in spite of viewpoint change

How do synthetic images compare with real images?

Results on GMU Kitchen Scenes

Dataset	mAP
Real Images from GMU	86.3
Semantic-and-Geometry Aware Synthesis	51.7
Synthetic Images (Ours)	76.2
Semantic-and-Geometry Aware Synthesis + Real	85.0
Synthetic Images (Ours) + Real Images	88.8

Active Vision Dataset

6 Instances from GMU Kitchen Scenes

9 Kitchen Scenes, 17,556 Annotated Frames for Evaluation

Instances are usually more difficult to detect as compared to GMU

Can evaluate model trained on real images from GMU Scenes

Results on Active Vision Dataset

1st Row: Synthetic data doesn't throw false positives

2nd Row: Synthetic data detects objects at very small scales also

Results on Active Vision Dataset

Dataset	mAP
Real Images from GMU	41.9
Synthetic Images	36.5
Synthetic Images + Real Images	51.1

Results on Active Vision Dataset

Dataset	mAP
10% Real Images	15.8
10% Real Images + Synthetic Images	43.2
40% Real Images	38.2
40% Real Images + Synthetic Images	50.2
70% Real Images	39.4
70% Real Images + Synthetic Images	50.6

Synthetic data captures information complementary to the real images

SUMMARY

Manual effort involved in creating annotated datasets can be reduced significantly

VIDEOS

3D RECONSTRUCTION

Videos to propagate labels from one frame to the next

O 3D Reconstruction
 allows us to get pose and
 bounding box annotations
 automatically

SYNTHESIZING SCENES

 Instead of chasing global realism, we use noise and data augmentation effectively to build robust detectors

ACKNOWLEDGEMENTS

Ishan Misra

Georgios Georgakis (GMU)

Phil Ammirato (UNC)

Junjue Wang (ELIJAH)

Mahadev Satyanarayanan (ELIJAH)

Michael Kaess

Martial Hebert

THANKS!

Object Detector Pipeline

Query detector with image using browser

Results on GMU Kitchen Scenes

1st Row: Synthetic data

Annotation Results

Azimuth = 11

Azimuth = 48

Azimuth = 77

Azimuth = 175

Azimuth = 105

Azimuth = 130

Challenges

Realism

Don't training
 images have to look
 realistic?

Domain Adaptation

Models trained on synthetic data don't work as well on real images

Dataset Bias

 Lack of diversity in training images due to unconscious bias in creating datasets