Temporal Cycle Consistency Learning

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, Andr<u>ew Zisserman</u>

Problem Setup

Suppose we have multiple unaligned videos of the same activity:

- from different viewpoints
- with different objects
- with camera motion
- with different pace

Goal: time-align the videos

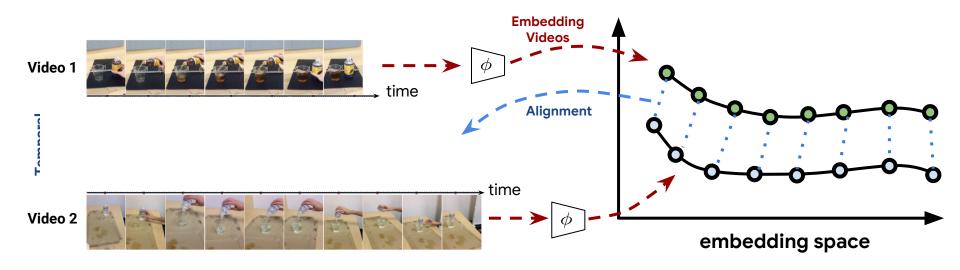
Why would we want to do this?

- to be able to compare videos
- to be able to learn from their alignments
- to be able to learn action phases

Example Videos: Pouring

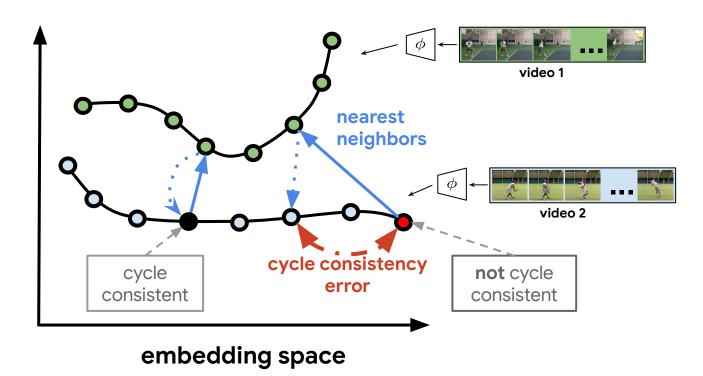
Temporal Cycle Consistency Learning

Self-supervised representation learning through temporal alignment



Finding correspondences across multiple videos despite many factors of variation

Cycle Consistency



Motivation

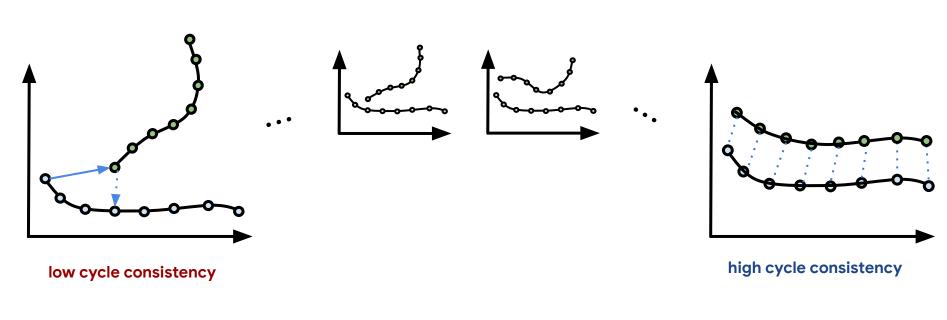
Once we have learnt the embedding space ...

it can be used for aligning videos and encoding phase

https://www.youtube.com/watch?v=iWjjeMQmt8E

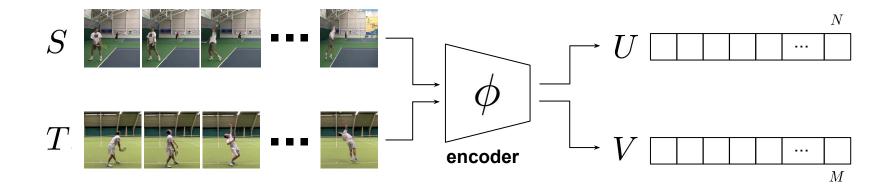
Differentiable Cycle Consistency

Maximizing one-to-one mapping capacity



A differentiable objective

Video Embedding



$$U = \{u_1, u_2, ..., u_N\} \qquad V = \{v_1, v_2, ..., v_M\}$$

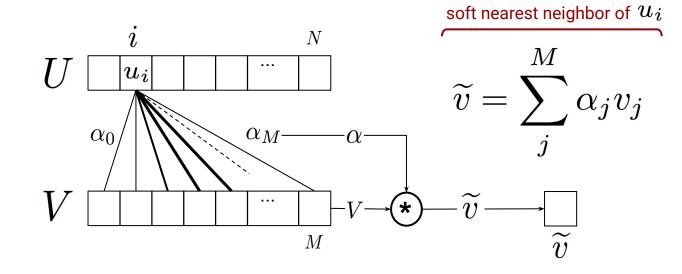
$$V = \{v_1, v_2, ..., v_M\}$$

Differentiable Cycle Consistency

Soft nearest neighbor

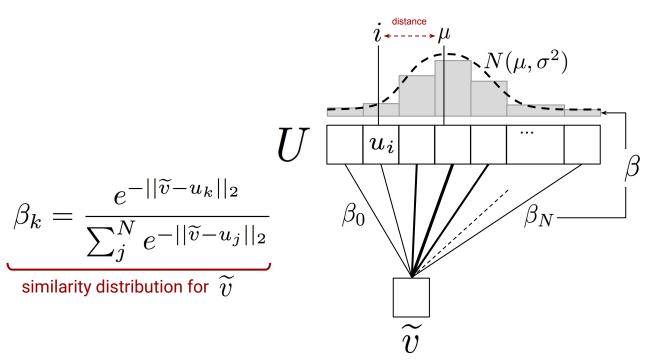
$$\alpha_j = \frac{e^{-||u_i - v_j||_2}}{\sum_k^M e^{-||u_i - v_k||_2}}$$

similarity distribution for u_i



Cycle-back regression

Differentiable Cycle Consistency



Objective Function:

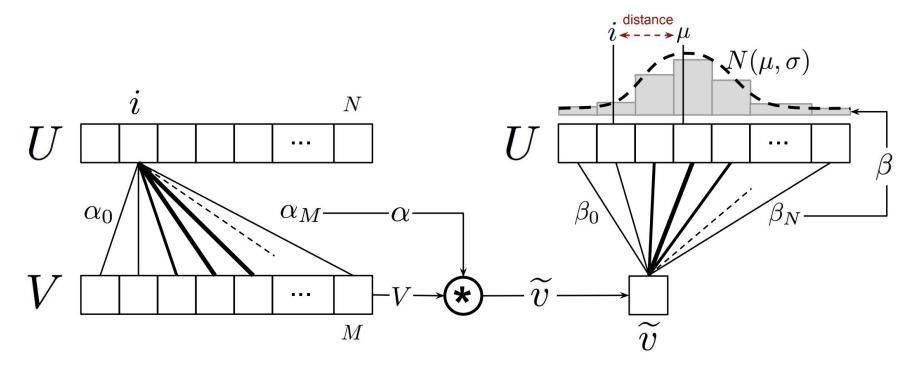
$$L_{cbr} = \frac{|i - \mu|^2}{\sigma^2} + \lambda \log(\sigma)$$

$$\mu = \sum_{k=1}^{N} \beta_k * k$$

$$\sigma^2 = \sum_{k=1}^{N} \beta_k * (k - \mu)^2$$

similarity distribution for $\widetilde{\eta}$

TCC Learning



Datasets

Pouring & Penn Action

Pouring Dataset

Penn Actions Dataset

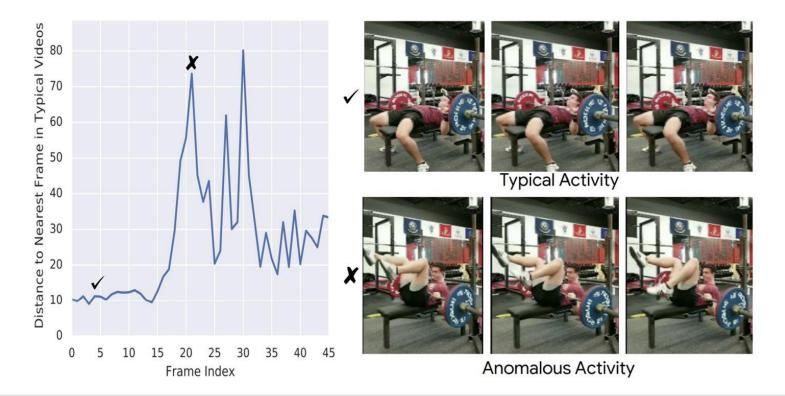
Applications

Pace Transfer

Synchronizing multiple videos

https://www.youtube.com/watch?v=iWjjeMQmt8E

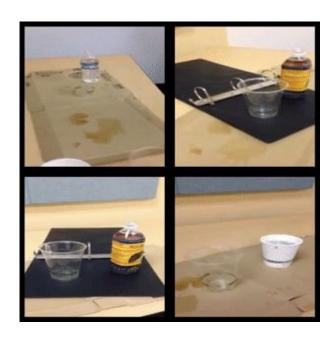
Anomaly Detection



Sound Transfer

https://www.youtube.com/watch?v=ATDGVqX3INo

Understanding Multiple Stages of a Process



Note the **variation** in real world videos:

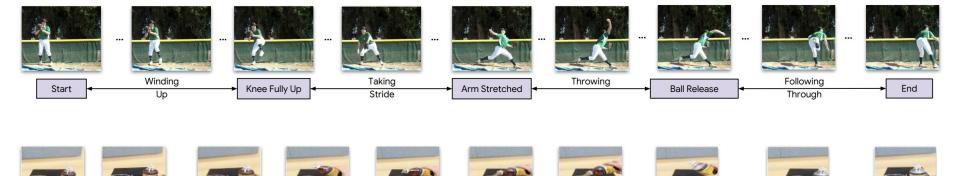
- 1. Viewpoint changes
- 2. Different objects
- 3. Camera Motion
- 4. Pace of the action

Key Events:

- 1. Hand touches the bottle
- 2. Liquid exits the bottle
- 3. Pouring complete
- Bottle back on the table

Action Phase Classification

Pouring & Penn Action



Pouring

Liquid

Example labels for the actions 'Baseball Pitch' (top row) and 'Pouring' (bottom row). The key events are shown in boxes below the frame (e.g. 'Hand touches bottle'), and each frame in between two key events has a phase label (e.g. 'Lifting bottle').

Liquid Exits

Bottle

Start

Hand

Reaching

Hand Touches

Bottle

Lifting

Bottle

Bottle Back

on Table

Hand

Recedina

End

Placing

Bottle

Pouring

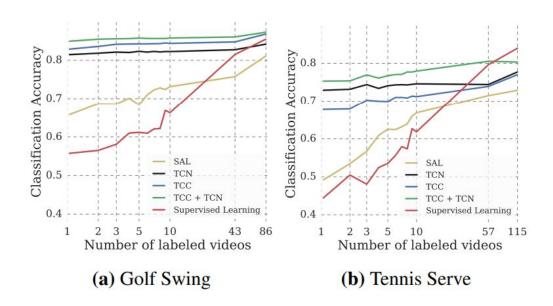
Complete

Action Phase Classification

Results

Datasets	\mid % of Labels $ ightarrow$	0.1	0.5	1.0
Penn Action	Supervised Learning	50.71	72.86	79.98
	SaL [27]	66.15	71.10	72.53
	TCN [35]	69.65	71.41	72.15
	TCC (ours)	74.68	76.39	77.30
Pouring	Supervised Learning	62.01	77.67	88.41
	SaL [27]	74.50	80.96	83.19
	TCN [35]	76.03	83.27	84.57
	TCC (ours)	86.82	89.43	90.21

Few Shot Action Phase Classification



- Few shot classification benefits from self-supervised pre-training
- Similar conclusion in "Data-Efficient Image Recognition with Contrastive Predictive Coding", Henaff, et

Fine grained retrieval

Query

Leg fully up after throwing

Conclusion

- Self-supervised representation learning method.
- Based on temporal alignment of videos.
- Useful per-frame features for fine-grained tasks.

