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Differentiable Cycle-Consistency Losses
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Experiments and Results
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1. Learn per-frame representations by video alignment.
2. Principle of mutual nearest neighbors is used as a training signal. 

Metrics for Fine-grained Understanding
1. Phase Classification Accuracy: For each frame, predict action phase.
2. Progress Prediction: For each frame predict, how far ahead/behind 

the frame is from key events (like beginning of an action phase)
3. Kendall’s Tau: For every pair of videos, measures alignment between 

sequences. Applications

Cycle-back Classification Cycle-back Regression

1. Which cycle-consistency loss is better?

2. How effective  is TCC for phase classification?

3.How effective is TCC in a few-shot setting?

Regression uses more temporal information and results in better performance.

Unsupervised Video Alignment
Video alignment is as easy as looking up nearest-neighbors in TCC space.

Label/Modality Transfer
Transfer modalities (like sound) and temporal labels from one video to all 
other videos of the same action

Fine-grained Retrieval
Each frame of a video can be used for retrieval in other videos.

t-SNE Visualization of TCC Embeddings

Loss Phase Classification Phase Progression Kendall’s Tau

Mean Squared Error 86.2 0.65 0.61

Cycle-back Classification 88.1 0.67 0.67

Cycle-back Regression 91.8 0.80 0.85

% of Labels

Dataset Method 0.1 0.5 1.0

Penn Action [3]

Supervised Learning 50.7 72.9 80.0

SAL [2] 66.2 71.1 72.5

TCN [1] 69.7 71.4 72.2

TCC 74.7 76.4 77.3

Pouring [1]

Supervised Learning 62.0 77.7 88.4

SAL [2] 74.5 81.0 83.2

TCN [1] 76.0 83.3 84.6

TCC 86.8 89.4 90.2

logits
:predictions:

label:

TCC + one labeled video is as good as supervised learning on ~50  labeled videos.

TEMPORAL CYCLE-CONSISTENCY LEARNING
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