

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet and Andrew Zisserman

Problem Setting

Research Questions

- 1. How do we train models that understand each frame of a video?
- 2. Can we avoid annotating each frame for training such models?

Temporal Cycle-Consistency (TCC) Learning

- 1. Learn per-frame representations by video alignment.
- 2. Principle of mutual nearest neighbors is used as a training signal.

embedding space

Embedding Spaces with varying levels of Cycle-Consistency

Differentiable Cycle-Consistency Losses

soft nearest neighbor

video embedding

TEMPORAL CYCLE-CONSISTENCY LEARNING

$$\overrightarrow{v} = \sum_{j}^{M} \alpha_{j} v_{j}$$

soft nearest neighbor of u_i

logits $x_k = -||\widetilde{v} - u_k||_2$ predictions: $\hat{y} = softmax(x)$ label: y = x

$$L_{cbc} = -\sum_{j}^{n} y_j \log(\hat{y}_j)$$

Metrics for Fine-grained Understanding

- 1. Phase Classification Accuracy: For each frame, predict action phase.
- 2. Progress Prediction: For each frame predict, how far ahead/behind
- the frame is from key events (like beginning of an action phase)
- sequences.

Experiments and Results

1. Which cycle-consistency loss is better?

Loss	Phase Classification	Phase Progression	Kendall's Tau
Mean Squared Error	86.2	0.65	0.61
Cycle-back Classification	88.1	0.67	0.67
Cycle-back Regression	91.8	0.80	0.85

Regression uses more temporal information and results in better performance.

2. How effective is TCC for phase classification?

		% of Labels			
Dataset	Method	0.1	0.5	1.0	
Penn Action [3]	Supervised Learning	50.7	72.9	80.0	
	SAL [2]	66.2	71.1	72.5	
	TCN [1]	69.7	71.4	72.2	
	TCC	74.7	76.4	77.3	
Pouring [1]	Supervised Learning	62.0	77.7	88.4	
	SAL [2]	74.5	81.0	83.2	
	TCN [1]	76.0	83.3	84.6	
	TCC	86.8	89.4	90.2	

(a) Golf Swing (**b**) Tennis Serve TCC + one labeled video is as good as supervised learning on ~50 labeled videos.

Cycle-back Regression

$$L_{cbr} = \frac{|i - \mu|^2}{\sigma^2} + \lambda \log(\sigma)$$

3. Kendall's Tau: For every pair of videos, measures alignment between

t-SNE Visualization of TCC Embeddings

Video alignment is as easy as looking up nearest-neighbors in TCC space. Label/Modality Transfer

Transfer modalities (like sound) and temporal labels from one video to all other videos of the same action

[1] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine, "Time-contrastive networks: Self-supervised learning from video"

[2] I. Misra, C. L. Zitnick, and M. Hebert. "Unsupervised Learning using Sequential Verification for Action Recognition" [3] W. Zhang, M. Zhu, and K. G. Derpanis. "From Actemes to Action: A Strongly-Supervised Representation for Detailed Action Understanding"

Fine-grained Retrieval

Each frame of a video can be used for retrieval in other videos.

References

