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Problem Setting

Fine-grained Video Understanding
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Research Questions

1. How do we train models that understand each frame of a video?
2. Can we avoid annotating each frame for training such models?

Temporal Cycle-Consistency (TCC) Learning
1. Learn per-frame representations by video alignment.
2. Principle of mutual nearest neighbors is used as a training signal.
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Embedding Spaces with varying levels of Cycle-Consistency

Differentiable Cycle-Consistency Losses
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Cycle-back Classification
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Cycle-back Regression
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Metrics for Fine-grained Understanding

Phase Classification Accuracy: For each frame, predict action phase.
Progress Prediction: For each frame predict, how far ahead/behind
the frame is from key events (like beginning of an action phase)
Kendall’s Tau: For every pair of videos, measures alignment between

seguences.

Experiments and Results
1. Which cycle-consistency loss is better?

Loss Phase Classification Phase Progression Kendall’s Tau
Mean Squared Error 86.2 0.65 0.61
Cycle-back Classification 88.1 0.67 0.67
Cycle-back Regression 91.8 0.80 0.85

Regression uses more temporal information and results in better performance.

2. How effective is TCC for phase classification?

% of Labels

Dataset Method 0.1 0.5 1.0
Supervised Learning 50.7 72.9 80.0
SAL [2] 66.2 71.1 72.5

Penn Action [3]
TCN [1] 69.7 71.4 72.2
TCC 74.7 76.4 77.3
Supervised Learning 62.0 777 88.4
SAL [2] 74.5 81.0 83.2

Pouring [1]

TCN [1] 76.0 83.3 84.6
TCC 86.8 89.4 90.2

3.How effective is TCC in a few-shot setting?
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Number of labeled videos

(a) Golf Swing
TCC + one labeled video is as good as supervised learning on ~50 labeled videos.
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(b) Tennis Serve

t-SNE Visualization of TCC Embeddings
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Applications

Unsupervised Video Alignment
Video alignment is as easy as looking up nearest-neighbors in TCC space.

Label/Modality Transfer
Transfer modalities (like sound) and temporal labels from one video to all
other videos of the same action

Fine-grained Retrieval
Each frame of a video can be used for retrieval in other videos.

Retrieved Nearest Neighbors
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